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Abstract

The probabilistic sentential decision diagram

(PSDD) was recently introduced as a tractable

representation of probability distributions that

are subject to logical constraints. Meanwhile,

efforts in tractable learning achieved great suc-

cess inducing complex joint distributions from

data without constraints, while guaranteeing

efficient exact probabilistic inference; for in-

stance by learning arithmetic circuits (ACs)

or sum-product networks (SPNs). This pa-

per studies the efficacy of PSDDs for the stan-

dard tractable learning task without constraints

and develops the first PSDD structure learn-

ing algorithm, called LEARNPSDD. Experi-

ments on standard benchmarks show competi-

tive performance, despite the fact that PSDDs

are more tractable and more restrictive than

their alternatives. LEARNPSDD compares fa-

vorably to SPNs, particularly in terms of model

size, which is a proxy for tractability. We re-

port state-of-the-art likelihood results on six

datasets. Moreover, LEARNPSDD retains the

ability to learn PSDD structures in probability

spaces subject to logical constraints, which is

beyond the reach of other representations.

1 INTRODUCTION

Tractable learning aims to induce complex, yet tractable

probability distributions from data (Domingos et al.,

2014; Mauro and Vergari, 2016). The learned tractable

model serves as a certificate to the user that any query

that arises can always be answered efficiently. In prac-

tice, this means that any conditional marginal can be

computed in time linear in the size of the learned model.

Current tractable learning efforts stem from two lines of

work. First, probabilistic graphical model learning has

long targeted sparse models (Meila and Jordan, 2000;

Narasimhan and Bilmes, 2004; Chechetka and Guestrin,

2007). Second, the field of knowledge compilation

studies tractable representations, such as arithmetic

circuits (ACs) for probability distributions (Darwiche,

2003), and NNF circuits for Boolean functions (Dar-

wiche and Marquis, 2002). The superior tractability of

these circuits derives from their ability to capture local

structure and determinism (Boutilier et al., 1996), which

makes compilation to circuits a state-of-the-art technique

for probabilistic inference (Darwiche et al., 2008; Choi

et al., 2013). Recently, circuits have also become the

chosen target representation for tractable learners (Lowd

and Domingos, 2008; Lowd and Rooshenas, 2013; Gens

and Domingos, 2013; Dennis and Ventura, 2015; Bekker

et al., 2015), spurring innovation in arithmetic circuit di-

alects such as sum-product networks (SPNs) (Poon and

Domingos, 2011; Peharz et al., 2014) and cutset net-

works (Rahman et al., 2014). While closely related,

these representations differ significantly in the types of

tractable queries and operations they support.

This paper considers the probabilistic sentential deci-

sion diagram (PSDD) (Kisa et al., 2014b), which is per-

haps the most powerful circuit proposed to date. Ow-

ing to their intricate structural properties, PSDDs support

closed-form parameter learning, MAP inference, com-

plex queries (Bekker et al., 2015), and even efficient

multiplication of distributions (Shen et al., 2016), which

are all increasingly rare. These strong properties permit

learning of PSDDs in probability spaces that are subject

to complex logical constraints disallowing large num-

bers of possible worlds (Kisa et al., 2014a). In this con-

text, knowledge compilation algorithms can build PSDD

structures without looking at the data. These structures

are large enough that parameter estimation was shown

sufficient to learn distributions over game traces (Choi

et al., 2016), configurations, and yield state-of-the-art re-

sults learning preference distributions (Choi et al., 2015).



These observations raise two questions: (i) are PSDDs

amenable to tractable learning when no logical con-

straints or compiled circuit are available a priori, and

(ii) can we still learn PSDDs that are subject to logi-

cal constraints while also fitting the data well; that is,

perform true structure learning? To answer both ques-

tions, we develop LEARNPSDD, which is the first struc-

ture learning algorithm for PSDDs. It uses local op-

erations on the PSDD circuit that maintain the desired

circuit properties, while steadily increasing model fit.

LEARNPSDD is supported by a vtree learning algo-

rithm that captures the data’s independencies in a tree

structure, which we empirically show to be an essen-

tial step of the learning process. Moreover, using ex-

pectation maximization on top of LEARNPSDD, we

show competitive results on the standard tractable learn-

ing benchmarks. When additionally performing bag-

ging, our PSDD learner reports state-of-the-art results

on six datasets. Finally, the proposed algorithm is gen-

eral and retains the ability to learn in logically con-

strained probability spaces. Here, we empirically show

that LEARNPSDD is able to refine the circuits compiled

from constraints, yielding superior likelihood scores.

2 A TRACTABLE REPRESENTATION

This section introduces the notation and circuit represen-

tation we employ throughout this paper.

Notation An uppercase letter X denotes a Boolean

random variable and a lowercase letter x denotes an as-

signment to X . Literals X or ¬X respectively assign

true or false to variable X . Sets of variables X and joint

assignments x are denoted in bold. An assignment x that

satisfies logical sentence α is denoted x |= α. Concate-

nations of sets represent their union. A complete assign-

ment to all variables is a possible world.

PSDDs Probabilistic sentential decision diagrams

(PSDDs) are circuit representations of joint probability

distributions over binary variables (Kisa et al., 2014b);

they are probabilistic extensions of sentential decision

diagrams (SDDs) (Darwiche, 2011), which represent

Boolean functions as logical circuits. A PSDD is a

parametrized directed acyclic graph (DAG), as depicted

in Figure 1c. Each inner node is either a logical AND

gate with two inputs, or a logical OR gate with an arbi-

trary number of inputs, and the types of nodes alternate.

Each terminal (input) node is a univariate distribution,

which could either be X when X is always true, ¬X
when it is always false, or (θ : X) when it is true with

probability θ. A decision node is the combination of an

OR gate with its AND gate inputs. We refer to the left

input of an AND gate as its prime (denoted p) and the
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Figure 1: A Bayesian network and its equivalent PSDD.

right one as its sub (denoted s). The n wires in each

decision node are annotated with a normalized probabil-

ity distribution θ1, . . . , θn. Alternatively, we refer to a

decision node’s labeled AND gates as its elements and

represent the decision node itself as a set of elements

{(p1, s1, θ1), . . . , (pn, sn, θn)}.

Syntactic Restrictions According to the semantics we

will detail later, each PSDD node represents a proba-

bility distribution over the random variables that appear

below it. However, each AND gate must be decompos-

able, meaning that its inputs represent a distribution over

disjoint sets of variables. This is enforced uniformly

throughout the circuit by a variable tree (vtree): a full,

binary tree, whose leaves are labeled with variables; see

Figure 1d. The internal vtree nodes split variables into

those appearing in the left subtree X and those in the

right subtree Y. This implies that the corresponding

PSDD decision nodes must have primes ranging over X

and subs over Y. We say the corresponding PSDD nodes

are normalized for the vtree node. Figure 1c labels deci-

sion nodes with the vtree node they are normalized for.

Each decision node must be deterministic, meaning that

for any single possible world, it can have at most one

prime assign a non-zero probability to that world. In

other words, the supports of all distributions represented

by primes must be disjoint within the same decision

node. We further assume that all elements assign a non-



zero probability to at least one world.1

Semantics Each PSDD node represents a probability

distribution, starting with the terminal nodes’ univari-

ate distributions. Each decision node q normalized for

a vtree node with X and Y in its left and right sub-

trees respectively, represents a distribution over XY as

Prq(XY) =
∑

i θi Prpi
(X) Prsi(Y). Under these se-

mantics, the PSDD in Figure 1c represents the same dis-

tribution as the Bayesian network in Figure 1a.

Each PSDD node’s distribution has an intricate support

over which it defines a non-zero probability. We refer

to this support as the base of node q, written [q]. The

base of a node can alternatively be defined as a logical

sentence using the recursion [q] =
∨

i[pi] ∧ [si], where

[X] = X , [¬X] = ¬X , and [θ : X] = true.

From a top-down perspective, a decision node presents a

choice between its prime bases [pi]: at most one is true

in each world. Thus, the PSDD is a decision diagram

branching on which sentence [pi] is true. This gener-

alizes decision trees or binary decision diagrams which

only branch on the value of a single variable. To reach

node q, all the primes on a path to q must be satisfied;

they are the sub-context of q. The disjunction of all q’s

sub-contexts is its context γq . This notion lets us pre-

cisely characterize PSDD parameter semantics: they are

conditional probabilities in root node r’s distribution:

θi = Prr([pi] | γq).

Inference and Learning PSDDs have several desir-

able properties. The probability of any (partial) assign-

ment x can be computed in time linear in the PSDD

size (Kisa et al., 2014b). Moreover, PSDDs support ef-

ficient complex queries, such as count queries (Bekker

et al., 2015), and can be multiplied efficiently (Shen

et al., 2016). Most pertinently, the maximum-likelihood

estimate for each PSDD parameter is calculated in closed

form by observing the fraction of complete examples

flowing through the relevant wire. More precisely, out

of all the examples that agree with the node context γq ,

the parameter estimate is the fraction of examples that

also agrees with the prime base [pi] (Kisa et al., 2014b):

θ̂i =
D#(γq, [pi])

D#(γq)
. (1)

To prevent overfitting, Laplace smoothing is used.

1In the original definition this was not required. In fact,
primes were required to be exhaustive, which can necessitate a
zero-probability element (Kisa et al., 2014b). This is an artifact
from defining PSDDs as an extension of SDDs, which require
exhaustiveness to support negation or disjunction. These logi-
cal operations are not used for our (probabilistic) purpose.

In all current PSDD applications, the learner is given a

logical sentence α that encodes domain knowledge (e.g.,

a constraint encoding rankings or game traces). Using

knowledge compilation, sentence α is first transformed

into an SDD circuit, and second into a PSDD by parame-

ter learning. Prior work does not perform structure learn-

ing: no data is used to come up with PSDD structures.

3 VTREE LEARNING

To learn a vtree from data, it is important to understand

the assumptions that are implied by a choice of vtree.

PSDDs recursively decompose the distribution by condi-

tioning it on the prime bases [pi]. Specifically, each deci-

sion node decomposes the distribution into independent

distributions over X and Y, guided by the vtree.

Proposition 1. (Kisa et al., 2014b) Prime and sub vari-

ables are independent in PSDD q, given a prime base:

Prq(XY | [pi]) = Prq(X | [pi]) Prq(Y | [pi])

= Prpi
(X) Prsi(Y).

Independence given a logical sentence is called context-

specific independence (Boutilier et al., 1996). Which

context-specific independencies can be exploited, as

specified by the vtree, has a crucial impact on PSDD size.

Prior work always obtained its vtree from compiling log-

ical constraints into SDD circuits (Choi and Darwiche,

2013), disregarding the dependencies that are implied by

this choice. We propose a novel method that does induce

vtrees based on the independencies found in the data.

A common way to quantify the level of independence

between two sets of variables is their mutual information:

MI(X,Y) =
∑

x

∑

y

Pr(xy) log
Pr(xy)

Pr(x) Pr(y)
.

Intuitively, low mutual information suggests that X and

Y are almost independent, and that the data distribution

can be approximated by a PSDD that satisfies Proposi-

tion 1 using only a small number of primes in each de-

cision node. Therefore, we let mutual information guide

the learner: our objective is to induce a vtree that mini-

mizes the mutual information between the X and Y vari-

ables as they are split in each internal vtree node. Addi-

tionally, we will aim to balance the vtrees. We observe

that this tends to produce smaller PSDDs in practice.

However, estimating mutual information between large

X and Y requires estimating an exponential number of

terms Pr(xy), each of which is hard to estimate accu-

rately from data. Therefore, we approximate mutual in-

formation by average pairwise mutual information:

pMI(X,Y) = avgX∈X,Y ∈Y MI({X}, {Y }).



Algorithm 1: Split(q, i,Zs,m)

Input: q, i: the ith element of node q to split, Zs:

mutually exclusive and exhaustive set of variable

assignments, m: depth of PartialCopy

Result: The ith element of node q is split on Zs .

1 n2c = ∅ // maps nodes to copies

2 RemoveElement(q, (pi, si))
3 foreach z ∈ Zs do

4 PartialCopy(pi, z, m, n2c)
5 PartialCopy(si, true, m, n2c)
6 AddElement(q, (n2c[pi],n2c[si]))

A δ ¬A ε

β γ

α

A δ ¬A ε

β ∧A β ∧ Ā γ

αsplit on A

Figure 2: Minimal Split. Nodes labels are their base.

We present two algorithms for optimizing a vtree’s pMI.

Top-down vtree induction starts with the full variable set

and recursively finds splits. Every step divides the vari-

ables into two equally-sized subsets with minimal pMI.

Finding splits is reduced to a balanced min-cut problem,

for which optimized solvers exist (Karypis, 2013).

Bottom-up vtree induction starts with singleton sets of

variables at the bottom of the vtree. For each level of the

vtree, it pairs two vtrees of the level below, maximizing

the pMI of the pairs, in order to minimize the pMI of fu-

ture pairings at higher levels. Finding pairings of vtrees

reduces to the minimum-cost perfect matching problem,

for which optimized solvers exist (Kolmogorov, 2009).

Both methods greedily solve the same problem. The dif-

ference lies in the direction of the greedy optimization.

Top-down induction begins at the root and will therefore

get the best splits at the higher levels. Bottom-up starts

from the leaves and will therefore get the best pairings at

the lower levels. Section 7 will present an empirical com-

parison showing that bottom-up induction outperforms

the top-down approach. Intuitively, most interactions oc-

cur between small numbers of variables, which makes

the lower levels of the vtree more important.

Algorithm 2: Clone(q, P,m)

Input: q: node to clone, P : parent nodes and elements

to redirect to clone, m: depth of PartialCopy

Result: Parents P are redirected to the clone of q.

1 n2c = ∅ // maps nodes to copies

2 PartialCopy(q, true, m, n2c)
3 foreach (π, i) ∈ P do Update(π, (i, q,n2c[q]))

α α αclone

Figure 3: Minimal Clone. Base α does not change.

4 PSDD STRUCTURE LEARNING

This section presents the first algorithm to learn PSDD

structure from data. The objective is to obtain a compact

structure that approximates the data distribution well.

We propose two operations, split and clone, that incre-

mentally change the PSDD structure while keeping the

PSDD syntactically sound and the base of the root node

unaltered. The soundness criteria guarantees that the

learned PSDD follows the syntactic definitions described

in Section 2. Not changing the root node’s base guaran-

tees that any constraint (i.e., domain knowledge) that is

encoded in the PSDD remains intact. Our learner applies

these operations greedily to optimize a score function.

4.1 PSDD OPERATIONS

A split or clone operation changes the PSDD structure to

represent a different distribution over the same base.

The split operation splits an element (AND node) into

multiple elements by constraining the prime. The ele-

ments are split based on a mutually exclusive (disjoint)

and exhaustive set of partial assignments to the prime

variables. This ensures that the decision node remains

deterministic. Indeed, for any assignment to the prime

variables that had a non-zero probability in the element

before the split, there can be at most one element after the

split that assigns a non-zero probability to it. To execute a

split (Figure 2, Algorithm 1), a new element is created for

each partial assignment, where the new prime is a copy

of the original prime constrained by the assignment. The



new sub is an unconstrained copy. The original element

is removed from its decision node.

The clone operation makes a copy of a node and redirects

some of the parents to the copy (Figure 3, Algorithm 2).

Both operations need to make partial copies of a decision

node and its descendants. Our algorithm can perform

these copies up to some specified depth m. A minimal

operation (m = 0) copies as few nodes as possible, and

a complete operation copies all nodes. Any non-minimal

operation (m > 0) is equivalent to multiple minimal op-

erations. The complete description of the partial-copy

algorithm is given in Appendix A.

Finally, Appendix B proves the following result.

Proposition 2. Splits and clones maintain a PSDD’s

syntactic properties and do not alter the base of its root.

4.2 SPLIT AND CLONE ARE LOCAL

Splits and clones are local operations. Only the node that

is modified, the parents that are redirected and the copied

descendants are affected. Furthermore, key properties of

an operation, such as the required change in PSDD struc-

ture and improvement in likelihood are typically not af-

fected by operations elsewhere in the PSDD.

Local operations have four desirable properties. First,

the complexity of executing an operation is bounded by

the number of elements it affects; cheap operations are

thus possible in large PSDDs. Second, the difference in

PSDD size after an operation can be easily obtained; it is

the difference in the affected elements.

Third, the difference in likelihood can be computed by

only looking at elements that are affected. Indeed, Kisa

et al. (2014b, long version) prove that the log-likelihood

decomposes over the PSDD elements as follows.

Proposition 3. The log-likelihood of PSDD r given data

D is a sum of log-likelihood contributions per node:2

lnL(r|D) = lnPrr(D) =
∑

q∈r

∑

i∈q

ln θq,i D#(γq, [pq,i]),

where D#(γq, [pq,i]) is the number of examples that sat-

isfy the node context of q and the base of q’s prime pq,i.

Fourth, we would like to simulate candidate operations

before committing to execute them. Because size and

likelihood changes are not affected by other operations,

we can cache their values when considering a large num-

ber of candidate operations during structure search.

Local operations support principled tractable learning,

using exact estimates of likelihood and tractability (size).

2This equation treats terminal nodes as degenerate decision
nodes with primes X and ¬X , and subs true and false .

Many other learners, especially traditional ones, are re-

quired to approximate the likelihood and have no ability

to reliably determine the tractability of a learned model.

4.3 LEARNPSDD ALGORITHM

We build on our split and clone operations to cre-

ate the first PSDD structure learning algorithm called

LEARNPSDD3. It incrementally improves the structure

of an existing PSDD to better fit the data. In every

step, the structure is changed by executing an operation.

Learning continues until the log-likelihood on validation

data stagnates, or a desired time or size limit is reached.

The operation to execute is greedily chosen based on the

best likelihood improvement per size increment:

score =
lnL(r′ | D)− lnL(r | D)

size(r′)− size(r)

where r is the original and r′ the updated PSDD.

The algorithm needs to be provided with an initial PSDD

and vtree. It can take any PSDD, even one that encodes

domain knowledge in its base, as is done in existing ap-

plications of PSDDs. It can also be a trivial, maximally

uninformative PSDD q whose base [q] = true and whose

distribution factorizes completely over the variables. The

vtree can either come from compiling those constraints,

or can be learn from data as described in Section 3.

In each iteration, LEARNPSDD considers one clone per

node and one split per element. The clone is the best

clone for that node where at most k parents are moved

to the copy. The split is the best split with the partial as-

signments limited to one prime variable. Only the scores

of the operations that use nodes affected by the previous

iteration’s operation need to be recalculated.

The operation depth parameter m is fixed during learn-

ing. The larger this parameter, the more elements are

added and the larger the log-likelihood improvement per

operation. A large m speeds up the learning but learns

larger PSDDs, which are more prone to overfitting. Ap-

pendix C provides more implementation details.

5 ENSEMBLES OF PSDDS

This section extends LEARNPSDD to induce mixtures of

PSDDs. A mixture of PSDDsM is a set of pairs (ri, wi)
where each ri is a component PSDD and wi is its mixture

weight. A mixture of n PSDDs must have
∑n

i=1 wi = 1.

We further assume that all ri are normalized for the same

vtree. A mixture of PSDDsM represents the probability

distribution PrM(X) =
∑n

i=1 wi Prri(X).

3Open-source code and experiments are available at
https://github.com/UCLA-StarAI/LearnPSDD.
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Figure 4: Representing ensembles as a single PSDD.

An ensemble of PSDDs is equivalent to a single PSDD

with latent variables. More precisely, by adding dlog(n)e
Boolean variables L to the top of the vtree (encoding

an n-valued latent component identifier), and mixing be-

tween the component PSDDs with an additional decision

node, one can capture the distribution PrM(X) in a sin-

gle PSDD circuit. Figure 4 depicts this reduction.

Because the latent variables L are not observable, the

mixture weights wi cannot be learned from data in closed

form. Instead, we appeal to expectation maximiza-

tion (EM) for optimizing the likelihood L(M | D) given

dataset D =
{

d(1),d(2), . . . ,d(M)
}

.

We propose EM-LEARNPSDD, a variant of the (soft)

structural EM algorithm (Friedman, 1998), to learn the

structure and parameters of ensembles of PSDDs. In

soft EM, each example x(j) takes part in each compo-

nent (that is, each PSDD ri) with weight αi,j , resulting

in weighted datasets D̄i for each component. Weights

αi,j represent the probability that example x(j) belongs

to distribution ri, and therefore
∑

i αi,j = 1 for all j.

EM-LEARNPSDD consists of two nested learners: an

outer EM for structure learning and an inner EM for pa-

rameter learning. The outer E-step is the inner learner.

The outer M-step uses LEARNPSDD to improve the

structure of all PSDD components given the weighted

datasets D̄i. It also updates the component weights as

wi =
∑M

j=1 αi,j/
∑n

k=1

∑M

j=1 αk,j .

The inner E-step redistributes the data over compo-

nents ri. For every example d(j), it updates the weights

in each component’s weighted dataset D̄i as

αi,j =
Prri(d

(j))
∑n

k=1 Prrk(d
(j))

.

The inner M-step learns the parameters in ri from D̄i

using closed-form estimates (employing a weighted ver-

sion of Equation 1). Internal EM steps alternate until

convergence, or for a maximum number of iterations. We

find empirically that a maximum of 3 inner EM iterations

is sufficient to improve the parameters and warrants mov-

ing to another iteration of the outer EM structure learner.

The initial weighted datasets D̄i are found by k-means

clustering on D and softening these clusters by weight-

ing an example in the cluster with 1 − (n − 1)ε and one

not in the cluster with ε (default 0.05). K-means cluster-

ing empirically provides a better starting point for EM-

LEARNPSDD: worlds belonging to the same component

distribution tend to be closer in Euclidean distance.

6 RELATED WORK

The sentential decision diagram (SDD) is a tractable rep-

resentation that is closely related to the PSDD. Despite

being a purely logical circuit, one can reduce statistical

models to a weighted model counting task on an SDD

encoding (Choi et al., 2013). Bekker et al. (2015) learn

Markov networks that have a compact SDD for weighted

model counting. The learning algorithm uses bottom-up

compilation to incrementally add factors to the SDD. It

selects features based on a likelihood vs. size trade-off.

Adding features is a global modification and requires all

parameters to be re-learned by convex optimization.

PSDDs can be reduced to sum-product networks (SPNs),

which are a syntactic variation on arithmetic circuits

(ACs). A PSDD can be turned into an equivalent SPN

by replacing AND nodes by products and OR nodes by

sums. Several learning algorithms for SPNs exist. Learn-

SPN induces an SPT (an SPN tree structure) by splitting

on latent variables (Gens and Domingos, 2013). O-SPN

and L-SPN improve this algorithm by merging parts of

the SPT back into a DAG (Rahman and Gogate, 2016b).

Vergari et al. (2015) describe various improvements to

reduce overfitting in LearnSPN. SearchSPN shares with

LEARNPSDD that it uses local operators (a combination

of a type of minimal split on a latent variable with a type

of minimal clone) (Dennis and Ventura, 2015).

Probabilistic decision graphs (PDGs) have a variable

forest that defines the dependencies between variables,

much like vtrees (Jaeger et al., 2006). To induce a vari-

able forest, one learns small PDGs for different forests

and chooses the best one. PDG structure learning ap-

plies split, merge and redirect operations to the graph in

a fixed order, much like L-SPN and O-SPN.

Beyond these, there is a vast literature on tractable learn-

ing algorithms that are less related to LEARNPSDD,

include ACBN (Lowd and Domingos, 2008), ACMN

(Lowd and Rooshenas, 2013), ID-SPN (Rooshenas and

Lowd, 2014) and ECNet (Rahman and Gogate, 2016a).





Table 1: Comparison among LEARNPSDD, EM-LEARNPSDD, SearchSPN, merged L-SPN and merged O-SPN in

terms of performance (log-likelihood) and model size (number of parameters). Sizes for SearchSPN are not reported

in the original paper. We use the following notation: (1) LL: Average test-set log-likelihood; (2) Size: Number of

parameters in the learned model; (3) † denotes a better LL between LEARNPSDD and SearchSPN; (4) ∗ denotes

a better LL between LEARNPSDD and EM-LEARNPSDD; (5) Bold likelihoods denote the best LL among EM-

LEARNPSDD, merged L-SPN and merged O-SPN.

Datasets |Var| |Train| |Valid| |Test|
LearnPSDD EM-LearnPSDD SearchSPN Merged L-SPN Merged O-SPN

LL Size LL Size LL LL Size LL Size

NLTCS 16 16181 2157 3236 −6.03
†∗

3170 −6.03
∗

2147 −6.07 −6.04 3988 −6.05 1152

MSNBC 17 291326 38843 58265 −6.05
†

8977 −6.04
∗

3891 −6.06 −6.46 2440 −6.08 9478

KDD 64 1800992 19907 34955 −2.16
†

14974 −2.12
∗

9182 −2.16 −2.14 6670 −2.19 16608

Plants 69 17412 2321 3482 −14.93 13129 −13.79
∗

13951 −13.12
† −12.69 47802 −13.49 36960

Audio 100 15000 2000 3000 −42.53 13765 −41.98
∗

9721 −40.13
† −40.02 10804 −42.06 6142

Jester 100 9000 1000 4116 −57.67 11322 −53.47
∗

7014 −53.08
† −52.97 10002 −55.36 4996

Netflix 100 15000 2000 3000 −58.92 10997 −58.41
∗

6250 −56.91
† −56.64 11604 −58.64 6142

Accidents 111 12758 1700 2551 −34.13 10489 −33.64
∗

6752 −30.02
† −30.01 13322 −30.83 6846

Retail 135 22041 2938 4408 −11.13 4091 −10.81
∗

7251 −10.97
† −10.87 2162 −10.95 3158

Pumsb-Star 163 12262 1635 2452 −34.11 10489 −33.67
∗

7965 −28.69
† −24.11 17604 −24.34 18338

DNA 180 1600 400 1186 −89.11
∗

6068 −92.67 14864 −81.76
† −85.51 4320 −87.49 1430

Kosarek 190 33375 4450 6675 −10.99
†

11034 −10.81
∗

10179 −11.00 −10.62 5318 −10.98 6712

MSWeb 294 29441 32750 5000 −10.18
†

11389 −9.97
∗

14512 −10.25 −9.90 16484 −10.06 12770

Book 500 8700 1159 1739 −35.90 15197 −34.97
∗

11292 −34.91
† −34.76 11998 −37.44 11916

EachMovie 500 4524 1002 591 −56.43
∗

12483 −58.01 16074 −53.28
† −52.07 15998 −58.05 19846

WebKB 839 2803 558 838 −163.42 10033 −161.09
∗

18431 −157.88
† −153.55 20134 −161.17 10046

Reuters-52 889 6532 1028 1530 −94.94 10585 −89.61
∗

9546 −86.38
† −83.90 46232 −87.49 28334

20NewsGrp. 910 11293 3764 3764 −161.41 12222 −161.09
∗

18431 −153.63
† −154.67 43684 −161.46 29016

BBC 1058 1670 225 330 −260.83 10585 −253.19
∗

20327 −252.13
† −253.45 21160 −260.59 8454

AD 1556 2461 327 491 −30.49
∗

9666 −31.78 9521 −16.97
† −16.77 49790 −15.39 31070

by conducting a grid search over {3, 5, 7, 9} on vali-

dation data and report the best result for each datasets.

EM-LEARNPSDD surpasses or ties the performance

of LEARNPSDD in 17 datasets and it learns smaller

models in 13 datasets; see Table 1. EM-LEARNPSDD

is superior to LEARNPSDD in 12 datasets by being

more accurate and more tractable at the same time.

7.5 COMPARISON WITH SPN LEARNERS

SPNs have been demonstrated to be quite effective

for tractable learning in probability spaces that are not

subject to logical domain constraints. SPN learners

have generated state-of-the-art results in the 20 bench-

mark datasets (Rooshenas and Lowd, 2014; Rahman and

Gogate, 2016b). Specifically, merged L-SPN and O-SPN

are the first few SPN structure learners that consider a

heuristic merging strategy and therefore produce SPNs

that have a significant advantage in size with no loss in

performance. In fact, merging shows an improvement

in test-set log-likelihood for most datasets (Rahman and

Gogate, 2016b). We compare our EM-LEARNPSDD

with merged L-SPN and merged O-SPN.

Our experiments show that EM-LEARNPSDD is com-

petitive with merged L-SPN and O-SPN. This result

is surprising because PSDDs are much more restrictive

than SPNs. EM-LEARNPSDD outperforms O-SPN on

likelihood in 11 datasets, learns smaller models in 14

datasets, and wins on both measures in 6 datasets; EM-

LEARNPSDD outperforms L-SPN on likelihood in 6

datasets, learns smaller models in 14 datasets and wins

on both in 2 datasets. See Table 1 for the full results.

7.6 COMPARISON WITH STATE OF THE ART

In this section, we demonstrate that we can achieve

near state-of-the art performance using our EM-

LEARNPSDD algorithm. It was shown in previous stud-

ies that bagged ensembles with expectation maximiza-

tion can significantly improve results on many of the 20

datasets (Rahman and Gogate, 2016a,b). We therefore

build bagging ensembles on top of EM-LEARNPSDD.

The result is still equivalent to a single PSDD, by a trans-

lation similar to the one shown in Figure 4 for mixture

models, except the wi for bagging represent a uniform

distribution. Our goal with this experiment is to match or

exceed the state-of-the-art. This is a very strong baseline,

consisting of five competitive tractable model learners:

(1) ACMN (Lowd and Rooshenas, 2013), (2) ID-SPN

(Rooshenas and Lowd, 2014), (3) SPN-SVD (Adel et al.,

2015), (4) ECNet (Rahman and Gogate, 2016a) and (6)

Merged L-SPN (Rahman and Gogate, 2016b).

When fixing the number of bags to 10, EM-

LEARNPSDD is competitive with the state of the art and

surpasses it on 6 out of 20 datasets; see Table 2.

Overall, the experiments outlined so far have incremen-

tally demonstrated that the PSDD structure learning al-

gorithms proposed in this paper (LEARNPSDD and EM-



Table 2: Comparison of test-set log-likelihood between

LearnPSDD and the state of the art († denotes best).

Datasets |Var|
LearnPSDD

Ensemble Best-to-Date

NLTCS 16 −5.99† −6.00

MSNBC 17 −6.04† −6.04†

KDD 64 −2.11† −2.12

Plants 69 −13.02 −11.99†

Audio 100 −39.94 −39.49†

Jester 100 −51.29 −41.11†

Netflix 100 −55.71† −55.84

Accidents 111 −30.16 −24.87†

Retail 135 −10.72† −10.78

Pumsb-Star 163 −26.12 −22.40†

DNA 180 −88.01 −80.03†

Kosarek 190 −10.52† −10.54

MSWeb 294 −9.89 −9.22†

Book 500 −34.97 −30.18†

EachMovie 500 −58.01 −51.14†

WebKB 839 −161.09 −150.10†

Reuters-52 889 −89.61 −80.66†

20NewsGrp. 910 −155.97 −150.88†

BBC 1058 −253.19 −233.26†

AD 1556 −31.78 −14.36†

LEARNPSDD) perform competitively in classical proba-

bility spaces without domain constraints. This is despite

the fact that PSDDs are more tractable and have more

syntactic properties than their alternatives.

7.7 EVALUATION IN A CONSTRAINED SPACE

PSDDs pay for their desirable properties, such as their

ability to encode domain knowledge into their base, and

ability to answer complex queries, by being a more re-

strictive representation. The experiments so far do not

directly exploit these desirable properties, to allow for a

comparison with other tractable learners. They therefore

only experience the restrictiveness. However, the next

experiments show that in practical domains, and spaces

with domain constraints in particular, having these desir-

able properties can be a great advantage.

Many real-world datasets contain discrete multi-valued

data, instead of being only binary. The straightforward

way to use general ACs for multi-valued domains, is to

introduce a binary variable for each value of the multi-

valued variable. Unfortunately, in the learned distribu-

tion, it will then be possible for a multi-valued variable to

have multiple values simultaneously. PSDDs can easily

cope with this by encoding into the base that binary vari-

ables belonging to the same multi-valued variable must

be mutually exclusive, and at least one must be true.

Table 3: Incorporating domain constraints improves the

quality of the learned distributions. Compared settings:

(i) unconstrained LEARNPSDD, (ii) constrained PSDD

(no LEARNPSDD), and (iii) constrained LEARNPSDD.

Datasets No Constraint PSDD LEARNPSDD

Adult −18.41 −14.14 −12.86

CovType −14.39 −8.81 −7.32

To assess the advantage of PSDD in this setting, we

compare three learning approaches: (i) LEARNPSDD

without domain constraints, (ii) parameter learning on

an SDD that is compiled from the constraints (as in

prior work, for example Kisa et al. (2014b)), and (iii)

applying LEARNPSDD on the initial PSDD obtained

from (ii). We use the same vtree in all settings and

run LEARNPSDD for 5 hours. We conduct the exper-

iments on two real-world datasets from the UCI reposi-

tory: Adult and CoverType. Continuous features are dis-

cretized into four equal-sized bins. Adult has 14 origi-

nal (125 binary) variables and CoverType has 12 original

(84 binary) variables. Adult and CoverType respectively

contain 32,562 and 581,012 examples.

As expected, learning structure on top of the constraints

yields the best models. Interestingly, only using the con-

straints to come up with the SDD structure strongly out-

performs unconstrained structure learning, which shows

that ignoring constraints complicates learning signifi-

cantly. The improvement is due to the fact that the proba-

bilities of many impossible assignments (given the multi-

valued constraint) are set to 0 and hence the probabilities

of the remaining assignments correspondingly increase.

8 CONCLUSIONS

The two questions we raised at the beginning of this pa-

per both receive a strong positive answer. LEARNPSDD

is an effective algorithm for learning PSDD structures.

It achieves some state-of-the-art results learning classi-

cal probability distributions that are not subject to con-

straints. Moreover, it can just as easily induce struc-

ture over logically constrained spaces without losing any

domain-specific information.
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Algorithm 3: PartialCopy(q, z,m,n2c)

Input: q: node to copy, z: variable assignment, m:

depth of copy, n2c: map of nodes to copy

Result: constrained copy of q in n2c

1 E = ∅
2 X and Y are the partition variables of q
3 zp = ∃Yz ; zs = ∃Xz

4 for i← 1 to n do

5 if zp � [pi] ∧ zs � [si] then

6 p′ = pi ; s′ = si
7 if m > 0 or [pi] 6⇒ zp then

8 if pi 6∈ n2c then

PartialCopy(pi, zp,m− 1,n2c)

9 p′ = n2c[pi]

10 if m > 0 or [si] 6⇒ zs then

11 if si 6∈ n2c then

PartialCopy(si, zs,m− 1,n2c)

12 s′ = n2c[si]

13 E = E ∪ [(p′, s′)]

14 n2c[q] = NewNode(E)

A PARTIAL COPY OF A PSDD

A copy of a node creates a new fold for that node and

its descendants up to a specified level (Algorithm 3,

lines 8,11). The elements of the copy beyond the speci-

fied level redirect to nodes of the original PSDD (line 6).

Optionally, the copy can be constrained to a partial as-

signment for some variables. In this case, only descen-

dants that agree with the assignment are kept in the copy

(line 5) and nodes beyond the specified level may have

to be copied to enforce the constraint (lines 7,10).

B PROOF OF SYNTACTIC VALIDITY

OF OPERATIONS

Definition 1 (Valid PSDD node). A PSDD node q that is

normalized for a vtree node v is valid if: (1) all primes

pi are valid nodes and normalized for the left child of

v; (2) all subs si are valid nodes and normalized for

the right child of v; (3) the primes are mutual exclusive:

∀i 6= j, [pi] ∧ [pj ] = ⊥; (4) all elements are satisfiable:

∀i, [pi] ∧ [si] 6= ⊥.

A valid operation keeps the PSDD syntactically sound

and does not alter the base of the root node.

Lemma 1 (PartialCopy(q, z,m,n2c) is valid). If the fol-

lowing conditions are satisfied: (1) q is valid; (2) n2c is

valid (this means that it only contains entries q → q′

where q and q′ are normalized for the same vtree, valid

and [q′] = [q] ∧ zq , where zq is the projection of the as-

signment z to the variables in the vtree of node q); (3) z

only contains variables in the vtree of q and is satisfiable

in q: z � [q].

Proof. Proof by induction.

Note the following preconditions hold and we use them

in our proof: (1) n2c includes q; (2) n2c is valid.

Base case: m = 0 and [q] → z. In the base case, only

one decision node is added according to n2c which is q′,
the copy of q. Because q and q′ have the same elements,

q′ is valid and [q] = [q′]. Because z is implied by [q],
[q′] = [q] ∧ zq .

Induction step: To use the inductive assumption, we first

show that the preconditions hold for the calls of Partial-

Copy. Because q is valid, so are its primes and subs. By

induction and precondition, n2c is valid. Finally, zp and

zs only contain the relevant variables because the others

are forgotten using existential quantification.

The first postcondition is satisfied because q is added

to n2c in line 14. In terms of the second postcondi-

tion, we consider 3 cases: (i) The entry is already in

n2c when PartialCopy is called, then it is valid because

of the precondition. (ii) The entry is added by a recur-

sive call of PartialCopy, then it is valid because of induc-

tion. (iii) The entry is q → q′, where q′ has an element

(p′i, s
′
i) for every element (pi, si) ∈ q, except for those

that do not agree with the assignment: pi ∧ zp = ⊥ or

si ∧ zs = ⊥. p′i and s′i are normalized for the correct

vtrees because they either are the original children, or

they come from n2c which is valid by the precondition

and induction.

We proceed to prove the mutual exclusivity of the copied

primes, the satisfiability of the copied elements and the

correctness of the base of the copied decision node.

The primes of q′ are mutually exclusive:

[p′i] ∧ [p′j ] = [pi] ∧ zp ∧ [pj ] ∧ zp

= [pi] ∧ [pj ] ∧ zp

= ⊥

All elements of q′ are satisfiable because all the elements

of q are satisfiable and elements that would become un-

satisfied by conditioning on z are removed.

The base of q′ is the base of q constraint by z:

[q′] =
∨

i∈q:zp�[pi]∧zs�[si]

[p′i] ∧ [s′i]



=
∨

i∈q

[pi] ∧ zp ∧ [si] ∧ zs

= z ∧
∨

i∈q

[pi] ∧ [si]

= z ∧ [q]

Proposition 4 (Split(q, i,Zs,m) is valid). If the follow-

ing conditions are satisfied: (1) q is valid. (2) All z ∈ Zs
only contain variables of the left children of q’s vtree and

are satisfiable in the ith element of q: z � [pi] ∧ [si].
(3) All z ∈ Zs are mutually exclusive and exhaustive.

Proof. Note that the following postconditions hold and

we use them in our proof: (1) q is valid; (2) the base of q
is not altered: [q] = [qold].

The primes and subs of q are normalized for the correct

vtree because q is valid and n2c is valid (Lemma 1).

The primes of q are mutually exclusive if: (i) the orig-

inal primes are mutually exclusive, (ii) the new primes

are mutually exclusive and (iii) every pair of an original

prime and a new prime is mutually exclusive.

All the elements of q are satisfiable, because the precon-

dition states that all the assignments must be satisfiable

in the split element.

The original base of q is [qold] =
∨

j [pj ] ∧ [sj ]. After the

split, the base is:

[q] =
∨

j 6=i

[pj ] ∧ [sj ] ∨
∨

z∈Zs

[pi,z] ∧ [si]

=
∨

j 6=i

[pj ] ∧ [sj ] ∨
∨

z∈Zs

[pi] ∧ z ∧ [si]

=
∨

j 6=i

[pj ] ∧ [sj ] ∨
(

[pi] ∧ [si] ∧
∨

z∈Zs

z
)

=
∨

j 6=i

[pj ] ∧ [sj ] ∨
(

[pi] ∧ [si]
)

= [qold]

Proposition 5 (Clone(q, P,m) is valid). If the following

conditions are satisfied: (1) q is valid; (2) ∀(π, i) ∈ P , q
is either pπ,i or sπ,i.

Proof. Note the following postconditions hold and we

use them in our proof: (1) ∀(π, i) ∈ P , π is valid;

(2) ∀(π, i) ∈ P , the base of π is not altered: [π] = [πold].
Because of lemma 1 and the preconditions, q′ is a valid

node with the same vtree and base as q. Redirecting the

parents to this node therefore keeps the parents valid and

also remain the base as unaltered.

C IMPLEMENTATION DETAILS

We discuss implementation details of LEARNPSDD.

Data In The Nodes The training data is explicitly kept

in the PSDD nodes during learning. Every node con-

tains a bitset that indicates which examples agree with

the context of that node. This speeds up parameter esti-

mation and log-likelihood calculations, which are needed

for every execution and simulation of an operation. For

simulation of an operation, a bitmask is used to represent

the examples that are moved to a copy.

Unique Node Cache To avoid duplicate calculations

when doing inference, the PSDD should not have dupli-

cate nodes. This is accomplished using the unique-node

technique, where a cache of the nodes is kept and it is

checked every time before creating a new node (Meinel

and Theobald, 2012). In general, two nodes are consid-

ered equal if they have the same (p, s, θ) elements. Dur-

ing learning, however, we adapt this by considering two

nodes different if they might evolve to a different struc-

ture, based on the training data that it contains. There are

two reasons for a node not to change. First, if the node’s

base is a complete assignment, i.e. if all descendants of

this node have only one element, then there are possible

LEARNPSDD operations. A clone would be useless in

this case because all the parameters would remain as 1.

Second, if the node contains no data. Such a node can-

not contribute to the log-likelihood and has therefore no

reason to change.

The number of added nodes is no longer a local charac-

teristic of an operation, as it depends on the nodes avail-

able in the cache. To cope with this, we consider nodes

that can be cached as free nodes: they are not counted

in the score. This makes sense because if the node is

already in the cache, it does not need to be added, other-

wise adding it to the cache can make subsequent opera-

tions less expensive to simulate or execute.

SDDs In The Nodes SDDs are kept in the nodes to rep-

resent their base. This is not really needed, because the

base is implied by the structure of the PSDD. However,

during structure learning, PSDDs grow bigger, while

SDDs do not. Therefore, if the base needs to be checked,

doing this on the SDD is more efficient. Note that before

any structure learning is done, the SDD is larger than the

PSDD because SDD’s primes need to be exhaustive and

therefore the SDD may have elements for subs that repre-

sent false. However, PSDDs are expected to grow larger

than the corresponding SDDs during structure learning.


